5.“牟合方盖”是我国古代数学家刘徽在研究球的体积的过程中构造的一个和谐优美的几何体.它由完全相同的四个曲面构成,相对的两个曲面在同一个圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).其直观图如下左图,图中四边形是为体现其直观性所作的辅助线.当其主视图和侧视图完全相同时,它的俯视图可能是( )
16.在下列命题中:
①存在一个平面与正方体的12条棱所成的角都相等;
②存在一个平面与正方体的6个面所成较小的二面角都相等;
③存在一条直线与正方体的12条棱所成的角都相等;
④存在一条直线与正方体的6个面所成的角都相等.
其中真命题为____________
18.某市一次全市高中男生身高统计调查数据显示:全市100 000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160 cm和184 cm之间,将测量结果按如下方式分成6组:第一组 [160,164],第二组[164,168],…,第6组[180,184],下图是按上述分组方法得到的频率分布直方图.
(Ⅰ)试评估该校高三年级男生在全市高中男生中的平均身高状况;
(Ⅱ)求这50名男生身高在172 cm以上(含172 cm)的人数;
(Ⅲ)在这50名男生身高在172 cm以上(含172 cm)的人中任意抽取2人,该2人中身高排名(从高到低)在全市前130名的人数记为,求的数学期望.
参考数据:若.则=0.6826,=0.9544,
=0.9974.
19.如图,在四棱锥中,底面是平行四边形,,侧面底面,,, 分别为的中点,点在线段上.
(Ⅰ)求证:平面;
(Ⅱ)如果直线与平面所成的角和直线与平面所成的角相等,求的值.
20.已知点为坐标原点,椭圆C的离心率为,点在椭圆C上.直线过点,且与椭圆C交于,两点.
(I)求椭圆C的方程;
(Ⅱ)椭圆C上是否存在一点,使得?若存在,求出此时直线的方程,若不存在,说明理由.
22.选修4-1:几何证明选讲
如图,已知:是以为直径的半圆上一点,⊥于点,直线与过点的切线相交于点[来,为中点,连接交于点,
(Ⅰ)求证:∠BCF=∠CAB ;
(Ⅱ)若FB=FE=1,求⊙O的半径.