18.某市一次全市高中男生身高统计调查数据显示:全市100 000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160 cm和184 cm之间,将测量结果按如下方式分成6组:第一组 [160,164],第二组[164,168],…,第6组[180,184],下图是按上述分组方法得到的频率分布直方图.
(Ⅰ)试评估该校高三年级男生在全市高中男生中的平均身高状况;
(Ⅱ)求这50名男生身高在172 cm以上(含172 cm)的人数;
(Ⅲ)在这50名男生身高在172 cm以上(含172 cm)的人中任意抽取2人,该2人中身高排名(从高到低)在全市前130名的人数记为,求的数学期望.
参考数据:若.则=0.6826,=0.9544,
=0.9974.
(Ⅰ)平均值168.72,高于全市平均值
(Ⅰ)由直方图,经过计算该校高三年级男生平均身高为
,
高于全市的平均值168(或者:经过计算该校高三年级男生平均身高为168.72,比较接近全市的平均值168).
(Ⅱ)由频率分布直方图知,后三组频率为(0.02+0.02+0.01)×4=0.2,人数为0.2×50=10,即这50名男生身高在172 cm以上(含172 cm)的人数为10人.
(Ⅲ),
,0.0013×100 000=130.
所以,全市前130名的身高在180 cm以上,这50人中180 cm以上的有2人.
随机变量可取,于是
,,
.
第一问估算,直接用每组的平均值乘以频率,然后相加即得
第二问先计算后三组的频率和,然后乘以总人数即得
第三问先根据正态分布概率计算出全市前130名是在那个身高区间,然后再计算50个人中有几个在这个区间,最后根据组合数计算出各变量的期望值,再相加即得。
1、对频率分布直方图认识不清,误把纵坐标当概率
2、对正态分布的意义理解不正确,不能正确计算概率