5.为了研究某班学生的脚长(单位:厘米)和身高
(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出
与
之间有线性相关关系,设其回归直线方程为
.已知
,
,
.该班某学生的脚长为24,据此估计其身高为( )
16.设函数,其中
.已知
.
(Ⅰ)求;
(Ⅱ)将函数的图象上各点的横坐标伸长为原学科*网来的2倍(纵坐标不变),再将得到的图象向左平移
个单位,得到函数
的图象,求
在
上的最小值.
17.如图,几何体是圆柱的一部分,它是由矩形(及其内部)以
边所在直线为旋转轴旋转
得到的,
是
的中点.
(Ⅰ)设是
上的一点,且
,求
的大小;
(Ⅱ)当,
,求二面角
的大小.
18.(本小题满分12分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.
(I)求接受甲种心理暗示的志愿者中包含A1但不包含的频率。
(II)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.
19.(本小题满分12分)
已知{xn}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2
(Ⅰ)求数列{xn}的通项公式;
(Ⅱ)如图,在平面直角坐标系xOy中,依次连接点P1(x1, 1),P2(x2, 2)…Pn+1(xn+1, n+1)得到折线P1 P2…Pn+1,求由该折线与直线y=0,所围成的区域的面积
.
21.(本小题满分14分)
在平面直角坐标系中,椭圆
:
的离心率为
,焦距为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,动直线:
交椭圆
于
两点,
是椭圆
上一点,直线
的斜率为
,且
,
是线段
延长线上一点,且
,
的半径为
,
是
的两条切线,切点分别为
.求
的最大值,并求取得最大值时直线
的斜率.