8. 根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与最接近的是( )
(参考数据:lg3≈0.48)
13. 能够说明“设a,b,c是任意实数.若a>b>c,则a+b>c”是假命题的一组整数a,b,c的值依次为______________________________.
14. 三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、纵坐标学科&网分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3。
①记Q1为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是_________。
②记pi为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是_________。
16. (本小题14分)
如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD//平面MAC,PA=PD=,AB=4.
(1)求证:M为PB的中点;
(2)求二面角B-PD-A的大小;
(3)求直线MC与平面BDP所成角的正弦值。
17. (本小题13分)
为了研究一种新药的疗效,选100名患者随机分成两组,每组个50名,一组服药,另一组不服药。一段时间后,记录了两组患者的生理指标x和y的数据,并制成下图,其中“·”表示服药者,“+”表示为服药者.
(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;
(2)从图中A,B,C,D,四人中随机选出两人,记为选出的两人中指标x的值大于1.7的人数,求的分布列和数学期望E();
(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)
18. (本小题14分)
已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.
(1)求抛物线C的方程,并求其焦点坐标和准线方程;
(2)求证:A为线段BM的中点.
19. (本小题13分)
已知函数f(x)=excosx−x.
(1)求曲线y= f(x)在点(0,f(0))处的切线方程;
(2)求函数f(x)在区间[0,]上的最大值和最小值.
20. (本小题13分)
设{an}和{bn}是两个等差数列,记
cn=max{b1–a1n,b2–a2n,…,bn–ann}(n=1,2,3,…),
其中max{x1,x2,…,xs}表示x1,x2,…,xs这s个数中最大的数.
(1)若an=n,bn=2n–1,求c1,c2,c3的值,并证明{cn}是等差数列;
(2)证明:或者对任意正数M,存在正整数m,当n≥m时,;或者存在正整数m,使得cm,cm+1,cm+2,…是等差数列.