15.若函数(
是自然对数的底数)在
的定义域上单调递增,则称函数
具有
性质.下列函数中所有具有
性质的函数的序号为 .
① ②
③
④
①④
试题分析:①在
上单调递增,故
具有
性质;
②在
上单调递减,故
不具有
性质;
③,令
,则
,
当
时,
,当
时,
,
1.本题考查新定义问题,属于创新题,符合新高考的走向.它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可.2.求可导函数单调区间的一般步骤
(1)确定函数f(x)的定义域(定义域优先);
(2)求导函数f′(x);
(3)在函数f(x)的定义域内求不等式f′(x)>0或f′(x)<0的解集.
(4)由f′(x)>0(f′(x)<0)的解集确定函数f(x)的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.3.由函数f(x)在(a,b)上的单调性,求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)恒成立问题,要注意“=”是否可以取到.