5.下列叙述正确的个数是 ( )
①l为直线,α、β为两个不重合的平面,若l⊥β,α⊥β,则l∥α
②若命题,则
③在△ABC中,“A>B”是“sinA>sinB”的充要条件
④若向量a,b满足a·b<0,则a与b的夹角为钝角
9. 若定义在R上的函数f(x)满足f(-x)=f(x), f(2-x)=f(x),且当x∈[0,1]时,其图象是四分之一圆(如图所示),则函数H(x)= |xex|-f(x)在区间上的零点个数为 ( )
10. 在今年的五一期间,某高校4名大学生申请去A,B,C三个旅游景点做志愿者,景区管委会给他们这样安排,每个景点至少分配一人,每人只能到一个景点。在安排的时候。甲要求不去景点A,则不同的安排方案共有( )
14.我们知道,把所有的正整数按照不同的方式排列,就会出现很多不同的意义。现在把所有正整数按从小到大的顺序排成如图所示的数表,其中第行共有个正整数,设表示位于这个数表中从上往下数第行,从左往右数第个数,若,则的和为 .
每年四月,很多学校都会组织运动会。在某所大学的运动会中,有一项篮球的投篮比赛。已知某专业的一名同学每次投进篮筐的概率是,且各次投篮的结果互不影响。
21.假设这名同学投篮5次,求有3次连续投进篮筐,另外2次没有投进的概率;
22.假设这名同学投篮5次,求恰有2次投进的概率;
23.假设这名同学投篮3次,每次投进得1分,没有投进得0分,在3次投篮中,若有2次连续投进,而另外1次没有投进,则额外加1分;若3次全投进,则额外加3分,记为这名同学投篮3次后的总的分数,求的分布列及数学期望。
已知分别为椭圆的左右焦点, 分别为其左右顶点,过的直线与椭圆相交于两点,且椭圆的离心率为。 当直线与轴垂直时,四边形的面积等于2,
24.求此椭圆的方程;
25.设不过原点O的直线与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等差数列,求△OPQ面积的取值范围.
请考生在以下三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.
【选修4—1】几何证明选讲(请回答28、29、30题)
如图:已知PA切圆O于A,PBC是割线,弦CD∥AP,AD交BC于E,F在CE上,且。
【选修4—4】坐标系与参数方程(请回答31、32题)
在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系。已知曲线C1的极坐标方程为,直线l的极坐标方程为。
【选修4—5】不等式选讲(请回答33、34题)
已知函数的最小值是
28.求证:∠EDF=∠P;
29.求证:
30.若,DE=6,EF=4.求PA的长。
31.写出曲线C1与直线l的直角坐标方程;
32.设Q为曲线C1上一动点,求Q点到直线l距离的最小值。
33.求a的值;
34.解不等式: