在△ABC中,角A、B、C所对的边分别为a、b、c,且满足cos2C-cos2A=2sin(+C)·sin(-C).
17.求角A的值;
18.若a=且b≥a,求2b-c的取值范围.
为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机抽调了50人,他们年龄的频数分布及支持“生育二胎”人数如下表:
19.由以上统计数据填下面2乘2列联表,并问是否有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异;
20.若对年龄在[5,15)的被调查人中各随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?
参考数据:
如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED为矩形,平面BFED⊥平面ABCD,BF=1.
21.求证:AD⊥平面BFED;
22.已知点P在线段EF上,=2.求三棱锥E-APD的体积.
已知曲线C的方程是(m>0,n>0),且曲线C过A(,),B(, )两点,O为坐标原点.
23.求曲线C的方程;
24.设M(x1,y1),N(x2,y2)是曲线C上两点,向量p=(x1,y1),q=(x2,y2),且p·q=0,若直线MN过(0,),求直线MN的斜率.
已知函数f(x)=.
25.讨论函数y=f(x)在x∈(m,+∞)上的单调性;
26.若m∈(0,],则当x∈[m,m+1]时,函数y=f(x)的图象是否总在函数g(x)=+x图象上方?请写出判断过程.
选修4—1:几何证明选讲
如图,正方形ABCD边长为2,以A为圆心、DA为半径的圆弧与以BC为直径的半圆O交于点F,连结BF并延长交CD于点E.
27.求证:E为CD的中点;
28.求EF·FB的值.