12.两球O1和O2在棱长为1的正方体ABCD—A1B1C1D1的内部,且互相外切,若球O1与过点A的正方体的三个面相切,球O2与过点C1的正方体的三个面相切,则球O1和O2的表面积之和的最小值为( )
18.在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥面ABC,D、E分别是棱A1B1,AA1的中点,点F在棱AB上,且AF=AB.
(Ⅰ)求证:EF∥平面BDC1;
(Ⅱ)求二面角E-BC1-D的余弦值.
19.已知袋内有标有1~6数字的小球6个,球除标号不同外完全相同,甲、乙两人玩“摸球赢枣”的游戏,由丙做裁判,游戏规定由丙从袋中有放回的摸三次球,记第1、2、3次摸到的球的标号分别为a,b,c,然后将所得的数代入函数f(x)=ax2+bx+c,若所得到的函数无零点,则甲输一个枣给乙,若所得到的函数有零点,则乙输四个枣给甲.
(Ⅰ)记函数的零点的个数为,求的分布列和数学期望;
(Ⅱ)根据两人得枣的数学期望,该游戏公平吗?若不公平,谁吃亏?
20.如图,椭圆C:(a>b>0)的离心率e=,左焦点为F,A,B,C为其三个顶点,直线CF与AB交于点D,若△ADC的面积为15.
(Ⅰ)求椭圆C的方程;
(Ⅱ)是否存在分别以AD,AC为弦的两个相外切的等圆?若存在,求出这两个圆的圆心坐标;若不存在,请说明理由.
21.已知函数f(x)=alnx+x2(a为实数).
(Ⅰ)求函数f(x)在区间[1,e]上的最小值及相应的x值;
(Ⅱ)若存在,使得f(x)≤(a+2)x成立,求实数a的取值范围.
22.请考生在下列三题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号.
1.设AB为圆O的直径,AB=10.E为线段AO上一点,OE=AB.过E作一直线交圆O于C,D两点,使得∠CEA=45°.试求CE2+ED2的值.
2.设直线l的参数方程为(t为参数),若以直角坐标系xOy的O点为极点,Ox轴为极轴,选择相同的长度单位建立极坐标系,得曲线C的极坐标方程为=.
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程,并指出曲线是什么曲线;
(Ⅱ)若直线l与曲线C交于A,B两点,求|AB|.
3.若实数a,b满足ab>0,且a2b=4,若a+b≥m恒成立.
(Ⅰ)求m的最大值;
(Ⅱ)若2|x-1|+|x|≤a+b对任意的a,b恒成立,求实数x的取值范围.