综合题15.0分
文科数学

如图,点是抛物线的焦点.

22.求抛物线方程;

23.若点为圆上一动点,直线是圆在点处的切线,直线与抛物线相交于两点(轴的两侧),求四边形的面积的最小值.

第1小题正确答案及相关解析

正确答案

见解析

解析

(Ⅰ)

考查方向

本题考察了抛物线的定义及标准方程,考察了直线与圆的位置关系,考察了,利用函数求最值,题型比较综合,运算量较大

解题思路

根据抛物线的定义直接得出抛物线方程

易错点

本题易错在运算出错(忽略在y轴的两侧),以及面积求解方式出错

第2小题正确答案及相关解析

正确答案

见解析

解析

(Ⅱ)解法一:设点,则直线

联立直线l与抛物线方程可得

由题意可得,故

,且

       ,            

当且仅当时取“=”,   ∴

考查方向

本题考察了抛物线的定义及标准方程,考察了直线与圆的位置关系,考察了,利用函数求最值,题型比较综合,运算量较大

解题思路

1、写出切线方程

②   可以直接借助圆的性质,直接得出圆的方程

②借助直线与圆的关系,圆心到直线的距离等于半径,得出k,m的关系

2、选取恰当的面积公式

①  

①    

3、直线与抛物线联立,借助韦达定理求出|AB|长,进而得到面积4、借助函数求最值得到答案

易错点

本题易错在运算出错(忽略在y轴的两侧),以及面积求解方式出错