9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,学|科网根据以上信息,则( )
17.已知等差数列{an}的前n项和为Sn,等比数列{bn}的前n项和为Tn,a1=-1,b1=1,a3+b2=2.
(1) 若a3+b2=5,学 科&网求{bn}的通项公式;
(2) 若T=21,求S1
18.如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD, ∠BAD=∠ABC=90°。
(1) 证明:直线BC∥平面PAD;
(2) 若△PAD面积为2,求四棱锥P-ABCD的体积。
19.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:
(1) 记A表示时间“旧养殖法的箱产量低于50kg”,估计A的概率;
(2) 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
(3) 根据箱产量的频率分布直方图,对两种养殖方法的优劣进行比较。
附:
20. 设O为坐标原点,动点M在椭圆C 上,过M作x轴的垂线,垂足为N,点P满足
(1) 求点P的轨迹方程;
(2) 设点 在直线x=-3上,且 .证明过点P且垂直于OQ的直线l过C的
左焦点F
22. 请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。
[选修4-4:坐标系与参数方程]
在直角坐标系xOy中,以坐标原点为极点,学 科&网x轴正半轴为极轴建立极坐标系。
曲线C1的极坐标方程为
(1)M为曲线C1的动点,点P在线段OM上,且满足,求点P的轨迹C1的直角坐标方程;
(2)设点A的极坐标为,点B在曲线C2上,求△OAB面积的最大值。