某市民用水拟实行阶梯水价,每人用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:
19.如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?
20.假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.
6.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为
8.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.
在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则
选做题:请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分.
22.选修4—1:几何证明选讲
如图,已知切⊙于点,割线交⊙于两点,∠的平分线和分别交于点.
求证:
(1);
(2)
23.选修4—4:坐标系与参数方程
在直角坐标系中,直线经过点(-1,0),其倾斜角为,以原点为极点,以轴非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系.设曲线的极坐标方程为
(1)若直线与曲线有公共点,求的取值范围;
(2)设为曲线上任意一点,求的取值范围.
24.选修4—5:不等式选讲
设函数
(1)当的最小值;
(2)若对任意的实数恒成立,求实数的取值范围.
由用水量的频率分布直方图知,
该市居民该月用水量在区间,,,,内的频
率依次为,,,,.
所以该月用水量不超过立方米的居民占%,用水量不超过立方米的居民占%.
依题意,
利用频率分布直方图与平均数的知识计算
该题平均水费的运算量有些大,计算要细心
由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表:
组号
1
2
3
4
5
6
7
8
分组
频率
利用频率分布直方图与平均数的知识计算
该题平均水费的运算量有些大,计算要细心