4.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:
①m⊥α,n∥α,则m⊥n;
②若α⊥γ,β⊥γ,则α∥β;
③若α∥β,β∥γ,m⊥α,则m⊥γ;
④若α∩γ=m,β∩γ=n,m∥n,则α∥β。
其中正确命题的序号是( )
10.某同学在研究函数f(x)=+的性质时,受到两点间距离公式的启发,将f(x)变形为f(x)=+,则f(x)表示|PA|+|PB|(如图),则
①f(x)的图象是中心对称图形;
②f(x)的图象是轴对称图形;
③函数f(x)的值域为;
④函数f(x)在区间(﹣∞,3)上单调递减;
⑤方程有两个解。
上述关于函数f(x)的描述正确的个数为( )
18.2014年巴西世界杯的周边商品有80%左右为“中国制造”,所有的厂家都是经过层层筛选才能获此殊荣.甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出取14件和5件,测量产品中的微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:
(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;
(2)当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品.用上述样本数据估计乙厂生产的优等品的数量;
(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望)。
19.如图,正四棱锥S﹣ABCD中,SA=AB,E、F、G分别为BC、SC、DC的中点,设P为线段FG上任意一点。
(l)求证:EP⊥AC;
(2)当直线BP与平面EFG所成的角取得最大值时,求二面角P﹣BD﹣C的大小。
20.设{an}为公比不为1的等比数列,a4=16,其前n项和为Sn,且5S1、2S2、S3成等差数列.
(l)求数列{an}的通项公式;
(2)设bn=,Tn为数列{bn}的前n项和。是否存在正整数k,使得对于任意n∈N*不等式Tn>()k恒成立?若存在,求出k的最小值;若不存在,请说明理由。
21.设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图。若抛物线C2:y=x2﹣1与y轴的交点为B,且经过F1,F2点。
(1)求椭圆C1的方程;
(2)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求△MPQ面积的最大值。
22.已知函数g(x)=alnx,f(x)=x3+x2+bx。
(1)若f(x)在区间[1,2]上不是单调函数,求实数b的范围;
(2)若对任意x∈[1,e],都有g(x)≥﹣x2+(a+2)x恒成立,求实数a的取值范围;
(3)当b=0时,设F(x)=,对任意给定的正实数a,曲线y=F(x)上是否存在两点P,Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,而且此三角形斜边中点在y轴上?请说明理由。