已知函数(
为常数,
且
),且数列
是首项为4,公差为2的等差数列.
(1)求证:数列是等比数列;
(2) 若,当
时,求数列
的前
项和
的最小值;
(3)若,问是否存在实数
,使得
是递增数列?若存在,求出
的范围;若不存在,说明理由.
12.以下数表的构造思路源于我国南宋数学家杨辉所著的《详解九章算术》一书中的“杨辉三角形”.
1 2 3 4 5 … 2013 2014 2015 2016
3 5 7 9 ………… 4027 4029 4031
8 12 16 ………………… 8056 8060
20 28 ………………………… 16116
…………………………………………
该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数为________________
4.已知数列的前项和为
,且a1=2,a2=3,Sn为数列
的前n项和,则S2016的值为( )
6.设等比数列的前
项的和为
,若
,则
的值为_______
(1) 证:由题意,
本题属于数列与不等式的综合应用题,题目的难度是偏难,本题的关键是:
(1)、利函数的性质求出数列的通项公式;
(2)、利用等比数列的求和公式求出前n项和的表达式,并求出最小值;
(3)、根据数学归纳法,分类讨论出k的取值范围。
本题考查了数列的综合应用题,特别是数列与不等式之间的应用题
1、由,得出
.不容易想到2、对
的讨论求出最小值讨论需要仔细3、数学归纳法的应用需要注意细节