15.设函数的部分图象如图所示.
(1)求函数的解析式;
(2)当时,求
的取值范围.
7.已知△ABC是边长为1的等边三角形,点分别是边
的中点,连接
并延长到点
,使得
,则
的值为
16.某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料.生产1车皮甲种肥料和生产1车皮乙中肥料所需三种原料的吨数如下表所示:
现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y不是生产甲、乙两种肥料的车皮数.
(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;
(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.
14.已知函数,
,若函数
在区间
内单调递增,且函数
的图像关于直线
对称,则
的值为 .
(1);
试题分析:本题属于三角函数图像的基本问题,题目的难度是逐渐由易到难,(1)直接按照求A、ω、φ步骤来求(2)转化成求函数的最值,要结合图像,要特别注意函数的定义域。
(1)由图象知,,
又,
,所以
,得
.
所以,将点
代入,得
,
即,又
,所以
.
所以.
(2)当时,
本题考查三角函数的图形和性质,解题步骤如下:
1、根据函数图像,确定A、ω、φ,进而求出函数的解析式。
2、求函数的解析式,必须在给定的x的取值范围内求解。
1、第一问中的根据角的范围如何确定φ。2、第二问中求的取值范围,必须先求出x的取值范围,同时结合三角函数的图像去分析。