综合题12.0分
文科数学

19.已知在四棱锥S—ABCD中,底面ABCD是平行四边形,若SB丄AC,SA = SC.

(1)求证:平面SBD丄平面

(2)若 AB = 2,SB = 3,cos∠SCB=,∠SAC=60。,求四棱锥 S—ABCD 的体积.

正确答案及相关解析

正确答案

解析

证AC垂直于面ABCD, 

设AC交BD于0,

因为SA=SC,

SO交SB于S,

所以AC垂直于平面SBD,

因为AC在平面ABCD内,

所以面SBD垂直于面ABCD.求底面面积时,

先用余弦定理求出角SOB=120度,角SOH=60度,

所以四棱锥的体积为

考查方向

立体几何中的相关计算和证明

解题思路

通过线线垂直得到线面垂直,进而得到面面垂直,找清四棱锥的底面和高,利用公式求解。

易错点

面面垂直概念混淆,立体感不强

知识点

棱柱、棱锥、棱台的体积 平面与平面垂直的判定与性质