已知点,点
在
轴上,点
在
轴的正半轴上,且满足
,点
在直线
上,且满
足
2
=
,
23.当点在
轴上移动时,求点
的轨迹
的方程;
24.过点作直线
与轨迹
交于
、
两点,线段
的垂直平分线与
轴的交点为
,设线段
的中点为
,且
,求
的值.
(1);
(Ⅰ)设点的坐标为
,则
,
,
,
,
由,得:
.
由2
=
得:
,
则由
1)第一问利用向量垂直的充要条件,以及2
=
得到方程,消参可得抛物线方程;
2)第二问首先设出三点的坐标,再设出直线
的方程,联立直线与抛物线,求得点
的坐标,根据
,可求得
,得到
。
计算量大,未知数比较多,计算上出错。
(2)
(Ⅱ)由题意知直线,设
,
,则
联立得
,
.
∴,∴
,∴
,
,令
,解得
,
∴,
∴
1)第一问利用向量垂直的充要条件,以及2
=
得到方程,消参可得抛物线方程;
2)第二问首先设出三点的坐标,再设出直线
的方程,联立直线与抛物线,求得点
的坐标,根据
,可求得
,得到
。
计算量大,未知数比较多,计算上出错。