综合题12.0分
文科数学

20. 如图,在平面直角坐标系中,椭圆的离心率为,直线轴交于点,与椭圆交于两点.当直线垂直于轴且点为椭圆的右焦点时, 弦的长为.

(1)求椭圆的方程;

(2)若点的坐标为,点在第一象限且横坐标为,连结点与原点的直线交椭圆于另一点,求的面积;

(3)是否存在点,使得为定值?若存在,请指出点的坐标,并求出该定值;若不存在,请说明理由.

正确答案及相关解析

正确答案

(1)

解析

试题分析:本题属于解析几何的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求(2)要注意计算的准确性,

(1)由,设,则

所以椭圆的方程为,因直线垂直于轴且点为椭圆的右焦点,即,代入椭圆方程,解得,于是,即

所以椭圆的方程为

(2)将

考查方向

本题主要考查了本题考查了椭圆的集合性质和直线与椭圆的位置关系

解题思路

(1)因直线垂直于轴且点为椭圆的右焦点,即,代入椭圆方程,解得,由此求出椭圆C的方程;

(2)将代入,解得y,可得直线AB的方程,与椭圆方程联立解得B,又PA过原点O,可得P,|PA|,直线PA的方程,

求出点B到直线PA的距离h;

(3)假设存在点E,使得为定值.  利用特殊位置法求出点E,然后判断点E任意情况均成立

易错点

(1)计算的准确性

(2)存在性问题,先特殊在一般

知识点

椭圆的定义及标准方程 直线与椭圆的位置关系 圆锥曲线中的探索性问题