如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=½AD。
19.在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;
20.证明:平面PAB⊥平面PBD。
(Ⅰ)取棱AD的中点M,证明详见解析;
(I)取棱AD的中点M(M∈平面PAD),点M即为所求的一个点.理由如下:
因为AD‖BC,BC=AD,所以BC‖AM, 且BC=AM.
所以四边形AMCB是平行四边形,从而CM‖AB.
又AB 平面PAB,CM
平面PAB,
所以CM∥平面PAB.
(说明:取棱PD的中点N,则所找的点可以是直线MN上任意一点)
本题考查线面平行、面面垂直的判断,考查空间想象能力、分析问题的能力、计算能力.证明线面平行时,可根据判定定理的条件在平面内找一条平行线,而这条平行线一般是由过面外的直线的一个平面与此平面相交而得,证明时注意定理的另外两个条件(线在面内,线在面外)要写全,否则会被扣分,求线面角(以及其他角),证明面面垂直时,要证线面垂直,要善于从图形中观察有哪些线线垂直,从而可能有哪个线面垂直,确定要证哪个线线垂直,切忌不加思考,随便写.
本题考查线面平行、面面垂直的判断,考查空间想象能力、分析问题的能力、计算能力.证明线面平行时,容易在证明平行时步骤不全面出现错误。
(II)由已知,PA⊥AB, PA ⊥ CD,
因为AD∥BC,BC=AD,所以直线AB与CD相交,
所以PA ⊥平面ABCD.
从而PA ⊥ BD.
因为AD∥BC,BC=AD,
所以BC∥MD,且BC=MD.
所以四边形BCDM是平行四边形.
所以BM=CD=AD,所以BD⊥AB.
又AB∩
(II)由已知,PA⊥AB, PA ⊥ CD, 因为AD∥BC,BC= 所以PA ⊥平面ABCD. 从而PA ⊥ BD. 因为AD∥BC,BC= 所以BC∥MD,且BC=MD. 所以四边形BCDM是平行四边形. 所以BM=CD= 又AB∩AP=
解析
AD,所以直线AB与CD相交,
AD,
AD,所以BD⊥AB.
本题考查线面平行、面面垂直的判断,考查空间想象能力、分析问题的能力、计算能力.证明线面平行时,可根据判定定理的条件在平面内找一条平行线,而这条平行线一般是由过面外的直线的一个平面与此平面相交而得,证明时注意定理的另外两个条件(线在面内,线在面外)要写全,否则会被扣分,求线面角(以及其他角),证明面面垂直时,要证线面垂直,要善于从图形中观察有哪些线线垂直,从而可能有哪个线面垂直,确定要证哪个线线垂直,切忌不加思考,随便写.
本题考查线面平行、面面垂直的判断,考查空间想象能力、分析问题的能力、计算能力.证明线面平行时,容易在证明平行时步骤不全面出现错误。