综合题12.0分
文科数学

如图,在平面直角坐标系中,已知是椭上的一点,从原点向圆作两条切线,分别交椭圆于点

24.若点在第一象限,且直线互相垂直,求圆的方程;

25.若直线的斜率存在,并记为,求的值;

第1小题正确答案及相关解析

正确答案

(1)

解析

(1)由圆的方程知圆的半径,因为直线互相垂直,且和圆相切,所以,即   ①又点在椭圆上,所以    ②

联立①②,解得,所以,所求圆的方程为

考查方向

本题主要考查椭圆和圆的性质、直线和圆的位置关系等知识,意在考查考生的计算能力及逻辑推理能力。

解题思路

先根据题中条件求出圆心的坐标,后即可得到圆的方程;

易错点

不知题中给出的直线是切线,且互相垂直如何使用导致不能得到关于圆心的方程;

第2小题正确答案及相关解析

正确答案

(2)

解析

(2)因为直线都与圆相切,所以,化简得,因为点在椭圆上,所以

,所以

考查方向

本题主要考查椭圆和圆的性质、直线和圆的位置关系等知识,意在考查考生的计算能力及逻辑推理能力。

解题思路

根据直线和圆相切得,化简得到,后消元即可得到答案。

易错点

不会化简得到