16.已知等差数列的前
项和为
,公差为
,
,且
.关于以下几种说法:
(1);
(2);
(3);
(4)当时,
最大;
(5).
其中正确的有 (把你认为正确的说法都写上)
(1)(2)(4)
由得
,因为第二个因式恒大于0,进行得到
(另解:可构造函数
,由函数的单调性与奇偶性推出
)。又
,
,所以此等差数列就为递减数列,即
,(1)对,(3)错;对于(2)
,由公式和性质知
,对的;由性质知
即
所以
为最后一项正项,故当
时,
最大,即(4)对;由
故(5)
本题主要考查了函数与数列的联系及等差数列的公式与性质。
不知道如何处理这个式子,对等差数列的性质不清。