计算题12.0分
文科数学

19.设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0,

(1)求b;

(2)若存在x0≥1,使得f(x0)<,求a的取值范围.

考察知识点

  • 三角函数中的恒等变换应用

同考题推荐

正确答案及相关解析

正确答案

见解析。

解析

(1)f′(x)=(x>0),∵曲线y=f(x)在点(1,f(1))处的切线斜率为0,

∴f′(1)=a+(1﹣a)×1﹣b=0,解得b=1.

(2)函数f(x)的定义域为(0,+∞),由(1)可知:f(x)=alnx+

=

①当a时,则,则当x>1时,f′(x)>0,

∴函数f(x)在(1,+∞)单调递增,

∴存在x0≥1,使得f(x0)<的充要条件是,即

解得

②当a<1时,则

则当x∈<

知识点

三角函数中的恒等变换应用