综合题13.0分
文科数学

20. 如图:A,B,C是椭圆的顶点,点为椭圆的右焦点,离心率为,且椭圆过点.

(I)求椭圆的方程;

(II)若P是椭圆上除顶点外的任意一点,直线CP交x轴于点E,直线BC与AP相交于点D,连结DE.设直线AP的斜率为k,直线DE的斜率为,证明:.

正确答案及相关解析

正确答案

见解析

解析

考查方向

本题考察了椭圆的定义及标准方程,,考察了圆锥曲线的定点、定值问题,

解题思路

1)根据离心率得到a,b的关系,根据点在椭圆上联立求出椭圆方程

2)设点p,根据要求求出直线AP,与直线BC求出点D

3)根据直线CP得到点E

4)使用两点间斜率公式得到DE斜率,化简得到结论

易错点

本题主要有以下几个错误:

1)椭圆方程求错

2)找不到有效突破点,导致运算量加大,无法得出理想结果

知识点

椭圆的定义及标准方程 椭圆的几何性质 圆锥曲线中的探索性问题 直线、圆及圆锥曲线的交汇问题