如图,在三棱锥中,∠ABC=90°,AB=AC=2,
,
在底面ABC的射影为BC的中点,D为
的
中点.
18.证明: ⊥平面
;
19.求直线和平面
所成的角的正弦
值.
详见解析;
利用线面垂直的判定定理证得结论成立;
证明:∵AB=AC=2,D是的中点.
∴,
∵BC∥,
∴,
∵⊥面ABC,
∥AO,
∴
∵BC∩AO=O,
∴⊥平面
;
连接AO,,根据几何体的性质得出
,利用直线平面的垂直定理判断.
空间向量的计算.
;
建立坐标系如图
∵在三棱柱中,∠BAC=90°,AB=AC=2,
,
∴O(0,0,0),B(0,,0),
,
即,
,
,
设平面的法向量为
,
,即得出
,
得出,
利用空间向量的垂直得出平面的法向量
,根据
与
数量积求解余弦值,即可得出直线
和平面
所成的角的正弦值.
空间向量的计算.