如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.
19.证明:平面AEC⊥平面AFC;
20.求直线AE与直线CF所成角的余弦值.
(Ⅰ)(Ⅰ)连接BD,设BD∩AC=G,连接EG,FG,EF,在菱形ABCD中,不妨设GB=1,由∠ABC=120°,可得AG=GC=.
由BE⊥平面ABCD,AB=BC可知,AE=EC,
又∵AE⊥EC,∴EG=,EG⊥AC,
在Rt△EBG中,可得BE=,故DF=
.
在Rt△FDG中,可得FG=.
在直角梯形BDFE中,由BD=2,BE=,DF=
可得EF=
,
∴,∴EG⊥FG,
∵AC∩FG=G,∴EG⊥平面AFC,
∵EG面AEC,∴平面AFC⊥平面AEC.
见答案
(Ⅰ)连接BD,设BD∩AC=G,连接EG,FG,EF,在菱形ABCD中,不妨设GB=1易证EG⊥AC,通过计算可证EG⊥FG,根据线面垂直判定定理可知EG⊥平面AFC,由面面垂直判定定理知平面AFC⊥平面AEC;
本题在证明过程中推理不严密易错。
(Ⅱ)
(Ⅱ)如图,以G为坐标原点,分别以的方向为
轴,y轴正方向,
为单位长度,建立空间直角坐标系G-xyz,由(Ⅰ)可得A(0,-
,0),E(1,0,
),F(-1,0,
),C(0,
,0),∴
=(1,
,
),
=(-1,-
,
).…10分
故.
所以直线AE与CF所成的角的余弦值为.
(Ⅱ)以G为坐标原点,分别以的方向为
轴,y轴正方向,
为单位长度,建立空间直角坐标系G-xyz,利用向量法可求出异面直线AE与CF所成角的余弦值.
本题在写垂直的过程不能写全条件。