3.“”是“函数
在区间[-1,1]上存在零点”的( )
∵a<-4,f(x)=ax+3,
∴f(0)=3>0,f(1)=a+3<(-4)+3=-1<0,f(0)•f(1)<0
∴函数f(x)=ax+3在区间[0,1]上存在零点x0.
∴a<-4”是“函数f(x)=ax+3在区间[-1,1]上存在零点x0”的充分条件;
反之,若函数f(x)=ax+3在区间[-1,1]上存在零点,则f(-1)•f(1)≤0,即(-a+3)(a+3)≤0解得a≤−3或a≥3,
∴a<-4不是“函数f(x)=ax+3在区间[-1,2]上存在零点的必要条件.故选A.