19.如图,在三棱柱ABC-A1B1C1中,AB=AC,且侧面BB1C1C是菱形,∠B1BC=60°.
(Ⅰ)求证:AB1⊥BC;
(Ⅱ)若AB⊥AC,AB1=BB1,且该三棱柱的体积为2,求AB的长.
(Ⅰ)略(Ⅱ)AB=2
(Ⅰ) 取BC的中点M,连接AM,B1M.
因为AB=AC, M是BC的中点,所以AM⊥BC
又因为侧面BB1C1C是菱形,且∠B1BC=60°
所以B1M⊥BC,
而AM∩B1M=M , AM, B1M平面AB1M,
所以BC⊥平面AB1M,因为A B1平面AB1M
所以BC⊥AB1
(Ⅱ) 设AB=,依题意可得,AC=,BC=
因为 M是BC的中点,所以
又因为AB1=BB1, 所以 所以AB12
解题步骤如下:在本题中,要证明两条异面直线垂直,需要证明一条直线垂直于另一条直线所在的平面,即需要线面垂直,即可得到线线垂直。根据题目给出的条件,知道体积,要求线段AB的长,联想到体积等于底面积乘以高,自然而然要去证明B1M为三棱柱ABC--A1B1C1的高,即可求出线段AB的长。
1、本题易在证明线面垂直时发生错误 。2、本题不容易得出B1M为三棱柱ABC--A1B1C1的高,导致题目无法进行。