14.某班主任在其工作手册中,对该班每个学生用十二项能力特征加以描述.每名学生的第
(
)项能力特征用
表示,
若学生的十二项能力特征分别记为
,
,则
两名学生的不同能力特征项数为 (用表示).如果两个
同学不同能力特征项数不少于,那么就说这两个同学的综合能力差异较大.若该班有
名学生两两综合能力差异较大,则这
名学生两两不同能力特征项数总和的最小值为 .
为了解学生暑假阅读名著的情况,一名教师对某班级的所有学生进行了调查,调查结果如下表.
17.从这班学生中任选一名男生,一名女生,求这两名学生阅读名著本数之和为4
的概率?
18.若从阅读名著不少于4本的学生中任选4人,设选到的男学生人数为,求随机变
量的分布列和数学期望;
19.试判断男学生阅读名著本数的方差与女学生阅读名著本数的方差
的大小(只需
写出结论).
如图,在直角梯形中,
,
,
.直角梯形
通过直角梯形
以直线
为轴旋转得到,且使得平面
平面
.
为线段
的中点,
为线段
上的动点.
20.求证:;
21.当点是线段
中点时,求二面角
的余
22.是否存在点,使得直线
//平面
?请说明理由.
已知等差数列的通项公式
.设数列
为等比数列,且
.
若,且等比数列
的公比最小,
28.写出数列的前4项;
29.求数列的通项公式;
30.证明:以为首项的无穷等比数列
有无数多个.