7.某产品在某零售摊位的零售价x(单位:元)与每天的销售量y(单位:个)的统计资料如下表所示:由上表可得回归直线方程中的,据此模型预测零售价为15元时,每天的销售量为()
19.如图所示,矩形中,,。,分别在线段和上,∥,将矩形沿折起,记折起后的矩形为,且平面平面。
(Ⅰ)求证:∥平面;
(Ⅱ)若,求证:;
(Ⅲ)求四面体体积的最大值,
20.已知抛物线C:y2=2px(p>0)过点A(1,﹣2)。
(Ⅰ)求抛物线C的方程,并求其准线方程;
(Ⅱ)是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C有公共点,且直线OA与L的距离等于?若存在,求直线L的方程;若不存在,说明理由。
21.对某校高三年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.
根据此数据作出了频数与频率的统计表和频率分布直方图如下:
(Ⅰ)求出表中及图中的值;
(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间 内的人数;
(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率。