19. 有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.
已知在全部105人中抽到随机抽取1人为优秀的概率为.
(1)请完成上面的列联表;
(2)根据列联表的数据,若按的可靠性要求,能否认为“成绩与班级有关系” ;
(3)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6或10号的概率.
参考公式:
参考数据:
20. 如图,已知椭圆的焦点分别为,双曲线,设为双曲线上异于顶点的任意一点,直线和与椭圆的交点分别为A、B和C、D.
(Ⅰ)设直线、的斜率分别为、,求:的值;
(Ⅱ)是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.
21.已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)记函数的图象为曲线.设点,是曲线上的不同两点.如果在曲线上存在点,使得:①;②曲线在点处的切线平行于直线,则称函数存在“中值相依切线”.试问:函数是否存在“中值相依切线”,请说明理由.
请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.
22.选修4—1:几何证明选讲
如图,已知与圆相切于点,经过点的割线交圆于点,的平分线分别交于点.
(1)证明:;
(2)若,求的值.
23.选修4—4:坐标系与参数方程
在直角坐标系中,以原点为极点,以轴非负半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系. 设曲线的参数方程为(为参数),直线的极坐标方程为.
(1)写出曲线的普通方程和直线的直角坐标方程;
(2)求曲线上的点到直线的最大距离.
24.选修4—5:不等式选讲
若不等式对满足的一切正实数恒成立,求实数的取值范围.