综合题12.0分
理科数学

20. 已知F(,0)为抛物线(p>0)的焦点,点N()(>0)为其上一点,点M与点N关于x轴对称,直线与抛物线交于异于M,N的A,B两点,且|NF|=

(Ⅰ)求抛物线方程和N点坐标;

(Ⅱ)判断直线中,是否存在使得面积最小的直线,若存在,求出直线的方程和面积的最小值;若不存在,说明理由.

正确答案及相关解析

正确答案

见解析

解析

(Ⅰ)由题意,则

故抛物线方程为

由|NF|=,则

所以N(2,2)。

(Ⅱ)由题意知直线的斜率不为0,则可设直线的方程为

联立方程组,得

设两个交点A(),B()(

考查方向

抛物线的性质与特征,圆锥曲线中的最值问题

解题思路

建立适当的坐标系,利用直线斜率之间的关系建立方程,进而求解,与抛物线联立成方程组,整理可得。

易错点

计算能力弱,找不到面积最小时候的情况

知识点

抛物线的标准方程和几何性质 圆锥曲线中的范围、最值问题 圆锥曲线中的探索性问题