综合题14.0分
理科数学

17.如图,在四棱锥中,底面是平行四边形,,侧面底面,, 分别为的中点,点在线段上。

(Ⅰ)求证:平面

(Ⅱ)若的中点,求证:平面

(Ⅲ)如果直线与平面所成的角和直线与平面所成的角相等,求的值。

正确答案及相关解析

正确答案

(Ⅰ)证明略;

(Ⅱ)证明略;

(Ⅲ)

解析

试题分析:本题属于立体几何的基本问题,题目的难度是逐渐由易到难,(1)直接按照步骤来求,(2)要注意判定定理的条件要全

(Ⅰ)证明:在平行四边形中,因为

所以

分别为的中点,得

所以

因为侧面底面,且

所以

考查方向

本题主要考查了空间中直线与平面的位置关系的转化、空间向量在立体几何中的运用;空间中线面位置关系的证明值域有以下几类:

1.线线间的平行或垂直,

2.面面间的平行或垂直,

3.线面间的平行或垂直;

空间向量在立体几何中的运用,主要分以下几类:

1.利用空间向量求异面直线的角,

2.利用空间向量求直线与平面所成的角,

3.利用空间向量求二面角,

4.利用空间向量求点到平面的距离.

解题思路

本题考查立体几何问题,解题步骤如下:

1.利用线面垂直的判定定理进行证明;

2.利用三角形的中位线得到线线平行,利用线面平行的判定定理得到线面平行;

3.利用面面平行的判定定理进行证明;

4.建立空间直角坐标系,利用三点共线设点,求出平面的法向量;5.利用两角相等求得比值。

易错点

1、第一、二问中,利用判定定理证明时,条件不全; 

2、第三问中写点的坐标出现错误。

知识点

直线与平面平行的判定与性质 直线与平面垂直的判定与性质 平面与平面垂直的判定与性质 线面角和二面角的求法