16.多面体ABCDEF(如图甲)的俯视图如图乙,己知面ADE为正三角形.
(1)求多面体ABCDEF的体积;
(2)求二面角A-BF-C的余弦值.
(1);
(2).
试题分析:本题属于立体几何中的基本问题,题目的难度是逐渐由易到难.
(1)分别取AB、CD的中点M、N,连接EM、EN、MN,多面体体积转化为棱柱AED-MFN的体积V1与四棱锥F-MBCN的体积V2之和。
由三视图可知,AD=2,AM=DN=1,面ADE为正三角形且垂直于底面ABCD,知F点到底面的距离为。所以V=V1+V2=+/3=.
(2) 取MN的中点O,BC的中点P,以OM为x轴,OP为y轴,OF为z轴建立坐标系,
易知A(1,-1,0),B(1,1,0),F(0,0, ),C(-1,1,0),则
设面ABF的法向量由,可得面ABF的一个法向量
同理。设二面角A-BF-C的平面角为θ,
,
本题考查了立体几何中的体积和二面角的问题.属于高考中的高频考点。
本题考查立体几何中的体积和二面角的问题,解题步骤如下:
(1)做辅助线,拆分多面体。
(2)建立空间直角坐标系。
(3)利用夹角的余弦公式求解。
(1)第一问中的多面体的拆分。
(2)第二问中二面角的求解时要建立适当的空间直角坐标系。