23.已知递增的等差数列的首项,且、、成等比数列.
(1)求数列的通项公式;
(2)设数列对任意,都有成立,求的值.
(3)若,求证:数列中的任意一项总可以表示成其他两项之积.
8. 数列满足,,记数列前n项的和为Sn,若对任意的 恒成立,则正整数的最小值为( )
17.已知数列的前项和为, 且满足, .
(Ⅰ) 求数列的通项公式;
(Ⅱ) 设为数列的前项和, 求;
(Ⅲ) 设, 证明:.
10.等差数列{an}的前n项和为Sn,且a1>0,若存在自然数,使得am=Sm , 当n>m时,Sn与an的大小关系为:_______.(填“>”;“<”或“=”)
(1)∵是递增的等差数列,设公差为
、、成等比数列,∴
由 及得
∴
(2)∵, 对都成立
当时,
解析已在路上飞奔,马上就到!