为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.
17. 设A为事件“选出的4人中恰有2 名种子选手,且这2名种子选手来自同一个协会”求事件A发生的概率;
18. 设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.
如图,在四棱柱中,侧棱
,
,
,
,且点M和N分别为
的中点.
19. 求证:;
20. 求二面角的正弦值;
21. 设E为棱上的点,若直线NE和平面ABCD所成角的正弦值为
,求线段
的长
已知椭圆的左焦点为
,离心率为
,点M在椭圆上且位于第一象限,直线FM被圆
截得的线段的长为c,
.
24. 求直线FM的斜率;
25. 求椭圆的方程;
26. 设动点P在椭圆上,若直线FP的斜率大于,求直线OP(O为原点)的斜率的取值范围.
已知函数,其中
.
27. 讨论的单调性;
28. 设曲线与
轴正半轴的交点为P,曲线在点P处的切线方程为
,求证:对于任意的正实数
,都有
;
29. 若关于的方程
有两个正实根
,求证: