18.为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通行人中随机选取了200人进行调查,当不处罚时,有80人会闯红灯,处罚时,得到如下数据:若用表中数据所得频率代替概率.
(Ⅰ)当罚金定为10元时,行人闯红灯的概率会比不进行处罚降低多少?
(Ⅱ)将选取的200人中会闯红灯的市民分为两类:A类市民在罚金不超过10元时就会改正行为;B类是其他市民.现对A类与B类市民按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为B类市民的概率是多少?
19.如图,矩形CDEF和梯形ABCD互相垂直,∠BAD=∠ADC=90°,AB=AD=CD,BE⊥DF.(Ⅰ)若M为EA中点,求证:AC∥平面MDF;(Ⅱ)若AB=2,求四棱锥E-ABCD的体积.
20.已知点M(-1,0),N(1,0),曲线E上任意一点到点M的距离均是到点N距离的倍.
(Ⅰ)求曲线E的方程;
(Ⅱ)已知m≠0,设直线l1:x-my-1=0交曲线E于A,C两点,直线l2:mx+y-m=0交曲线E于B,D两点.若CD的斜率为-1,求直线CD的方程.
21.设函数f(x)=-mlnx,g(x)=-(m+1)x,m>0.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当m≥1时,讨论函数f(x)与g(x)图象的交点个数.
本题为选做题,请考生在第22、23、24三题中任选一题做答。如果多做。则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目的题号涂黑.。
22.选修4—l:几何证明选讲如图,∠BAC的平分线与BC和△ABC的外接圆分别相交于D和E,延长AC交过D、E、C三点的圆于点F.(Ⅰ)求证:EC=EF;(Ⅱ)若ED=2,EF=3,求AC·AF的值.
23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为曲线C2的极坐标方程为ρ=cos(θ-).以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.
(Ⅰ)求曲线C2的直角坐标方程;(Ⅱ)求曲线C2上的动点M到曲线C1的距离的最大值.
24.(本小题满分10分)选修4—5:不等式选讲 已知函数f(x)=|x-2|-|x+1|.
(Ⅰ)解不等式f(x)>1;(Ⅱ)当x>0时,函数g(x)=(a>0)的最小值大于函数f(x),试求实数a的取值范围.