12.在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k丨n∈Z},k=0,1,2,3,4。给出如下四个结论:
①2011∈[1]
②-3∈[3];
③Z=[0]∪[1]∪[2]∪[3]∪[4]
④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”。
其中,正确结论的个数是()
19.如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,M为棱DD1上的一点。
(1)求三棱锥A-MCC1的体积;
(2)当A1M+MC取得最小值时,求证:B1M⊥平面MAC
20.袋中有大小、形状相同的红、黑球各一个,现一次有放回地随机摸取3次,每次摸取一个球
(1)试问:一共有多少种不同的结果?请列出所有可能的结果;
(2)若摸到红球时得2分,摸到黑球时得1分,求3次摸球所得总分为5的概率。
21.设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N。
(1)若直线MN的斜率为,求C的离心率;
(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b。
22.已知a,b为常数,且a≠0,函数,(e=2.71828…是自然对数的底数)。
(1)求实数b的值;
(2)求函数的单调区间;
(3)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由。
17.数列{an}中,a1=,前n项和Sn满足Sn+1﹣Sn=()n+1(n∈)N*。
(1)求数列{an}的通项公式an以及前n项和Sn;
(2)若S1,t(S1+S2),3(S2+S3)成等差数列,求实数t的值。