10.已知函数是定义在
上的偶函数,
为奇函数,
,当
时,
,则在区间
内满足方程
的实数
为( )
∵f(x+1)为奇函数,即f(x+1)=﹣f(﹣x+1),即f(x)=﹣f(2﹣x).
当x∈(1,2)时,2﹣x∈(0,1),∴f(x)=﹣f(2﹣x)=﹣log2(2﹣x).
又f(x)为偶函数,即f(x)=f(﹣x),于是f(﹣x)=﹣f(﹣x+2),
即f(x)=﹣f(x+2)=f(x+4),故 f(x)是以4为周期的函数.
∵f(1)=0,∴当8<x≤9时,0<x﹣8≤1,f(x)=f(x﹣8)=log2(x﹣8).
由,
可化为log2(x﹣8)+2=﹣1,得
.
故选B.
由f(x+1)为奇函数,可得f(x)=﹣f(2﹣x).由f(x)为偶函数可得f(x)=f(x+4),故 f(x)是以4为周期的函数.当8<x≤9时,求得f(x)=f(x﹣8)=log2(x﹣8).由log2(x﹣8)+2=﹣1得x的值.
函数与方程历年都是高考考查的重点与热点,且常考常新,但万变不离其宗,函数的“零点”“极点”“创新点”无一例外是考查的“ 关键点”与“根本点”.