12.已知函数f(x)=若关于x的不等式[f(x)]2+af(x)-b2<0恰有1个整数解,则实数a的最大值是
设f(x)=t,方程 t2+at-b2=0的两根分别为t1、t2,则t1t2=-b2≤0.若b≠0,则t1、t2异号,由函数图像可知,对应的x值不唯一,因此,b=0。即不等式的解为-a<t<0.注意到t=0时x=0,或x=2.因此a的最大值为8。A选项不正确,B选项不正确,C选项不正确,所以选D选项。
本题主要考查分段函数和不等式
1、画出f(x)的图像;
2、利用方程只有一个整数解求解,即可得到结果。A选项不正确,B选项不正确,C选项不正确,所以选D选项。
本题易在处理只有一个整数解时发生错误。