18.如图,在平面直角坐标系中,设点是椭圆上一点,从原点向圆作两条切线分别与椭圆交于点,直线的斜率分别记为.
(1)若圆与轴相切于椭圆的右焦点,求圆的方程;
(2)若.
①求证:;
②求的最大值.
(1)圆的方程为.(2)详见解析
试题分析:本题属于直线与圆锥曲线的综合问题,题目的难度较大,(1)直接求圆心和半径(2)证明定值问题时,要先表示出来,再通过计算化简得到(3)的最大值涉及到基本不等式,要能正确地使用基本不等式。
(1)因为椭圆右焦点的坐标为,所以圆心的坐标为,
从而圆的方程为.
(2)①因为圆与直线相切,所以,
即,
同理,有,
所以是方程
本题考查直线与圆锥曲线的位置关系,解决直线与椭圆的位置关系的相关问题时,常规思路是先把直线与椭圆联立方程组,消元、化简,然后应用根与系数的关系代入化简,从而解决相关问题。
1、第二问中证明,计算不出来常数。
2、第三问中求时,计算错误,同时使用基本不等式时有一定的难度。