已知函数f (x)= +lnx.
25.若函数f(x)在区间[1,e]上的最小值是,求a的值;
26.当a=1时,设F(x)=f(x)+1+,求证:当x>l时,.
(1);
(1)因 为,且,则
①当时,,函数单调递增,其最小值为,这与函数在上的最小值是相矛盾;
②当时,函数在上有,单调递减,在上有
(1)先对函数进行求导,再对参数进行分类讨论探讨函数的单调性从而研究其最小值及此时a的值 ;(2)通过灵活变形构造新函数的方法证明不等式。
对参数的分类讨论研究函数的最值。
(2)当x>l时,
(2)要证,即证,
当时,,
令,则,
当时,, 递增;当时,, 递减,
(1)先对函数进行求导,再对参数进行分类讨论探讨函数的单调性从而研究其最小值及此时a的值 ;(2)通过灵活变形构造新函数的方法证明不等式。
对参数的分类讨论研究函数的最值。