16.已知函数的定义域为
,
为
的导函数,且满足
,则不等式
的解集是
设g(x)=xf(x),则g'(x)=[xf(x)]'=x'f(x)+xf'(x)=xf′(x)+f(x)<0,∴函数g(x)在(0,+∞)上是减函数,∵f(x+1)>(x-1)f(x2-1),x∈(0,+∞),
∴(x+1)f(x+1)>(x+1)(x-1)f(x2-1),∴(x+1)f(x+1)>(x2-1)f(x2-1),∴g(x+1)>g(x2-1),∴x+1<x2-1,解得x>2.故答案为:(2,+∞).
由题意构造函数g(x)=xf (x),再由导函数的符号判断出函数g(x)的单调性,不等式f(x+1)>(x-1)f(x2-1),构造为g(x+1)>g(x2-1),问题得以解决
由条件构造函数和用导函数的符号判断函数的单调性