18.某次飞镖比赛中,规定每人最多发射3镖.在M处每射中一镖得3分,在N处每射中一镖得2分,如果前两次得分之和超过3分即停止发射,否则发射第三镖.某选手在M处的命中率q1为0.25,在N处的命中率为q2,该选手选择先在M处发射第一镖,以后都在N处发射.用X表示该选手比赛结束后所得的总分,其分布列为:
(1)求随机变量X的数学期望E(X);
(2)试比较该选手选择上述方式发射飞镖得分超过3分与选择都在N处发射飞镖得分超过3分的概率的大小.
13.今有直线 与圆交于不同的两点、,是坐标原点,且,则实数的取值范围是______.
19.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。
(1)求证:CE⊥平面PAD;
(2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积;
(3)在满足(2)的条件下求二面角B-PC-D的余弦值的绝对值。
11.四面体的四个顶点都在球的表面上,平面,△是边长为3的等边三角形. 若,则球的表面积为( )
解析已在路上飞奔,马上就到!