18.某校从参加某次知识竞赛的同学中,选取名同学将其成绩(百分制,均为整数)分成
,
,
,
,
,
六组后,得到部分频率分布直方图(如图),观察图形中的信息,回答下列问题.
(1)求分数在内的频率,并补全这个频率分布直方图;
(2)从频率分布直方图中,估计本次考试成绩的中位数;
(3)若从第1组和第6组两组学生中,随机抽取2人,求所抽取2人成绩之差的绝对值大于10的概率。
13.将高三(1)班参加体检的36名学生,编号为:1,2,3,,36,若采用系统抽样的方法抽取一个容量为4的样本,已知样本中含有编号为6号、24号、33号的学生,则
样本中剩余一名学生的编号是 .
18.在一次数学考试中,第22题和第23题为选做题. 规定每位考生必须且只须在其中选做一题. 设某4名考生选做每一道题的概率均为
.
(1)求其中甲、乙两名学生选做同一道题的概率;
(2)设这4名考生中选做第22题的学生个数为,求
的概率分布列及数学期望.
18.某人居住在城镇的A处,准备开车到单位B处上班. 若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图.(例如:A→C→D算作两个路段:路段AC发生堵车事件的概率为,路段CD发生堵车事件的概率为
.
(1)请你为其选择一条由A到B的最短路线(即此人只选择从西向东和从南向北的路线),使得途中发生堵车事件的概率最小;
(2)若记路线A→C→F→B中遇到堵车次数为随机变量,求
的数学期望
(1)(2)
(3)
(1)分数在[70,80)内的频率为1﹣(0.010+0.015+0.015+0.025+0.005)×10=0.3,
∴小矩形的高为0.030,补全频率分布直方图如图:
(2)由频率频率分布直方图知前三组的频率之和为0.1+0.15+0.15=0.4,
∴中位数在第四组,设中位数为70+x,则0.4+0.030×x=0.5⇒x=,
∴数据的中位数为70+=
,
(3)第1组:人(设为1,2,3,4,5,6)
第6组:人(设为A,B,C)
共有36个基本事件,满足条件的有18个,所以概率为。