17.某班同学参加社会实践活动,对本市25~55岁年龄段的人群进行某项随
机调查,得到各年龄段被调查人数的频率分布直方图如右(部分有缺损):
(1)补全频率分布直方图(需写出计算过程);
(2)现从[40,55)岁年龄段样本中采用分层抽样方法抽取6人分成A、B两个小组(每组3人)参加户外体验活动,记A组中年龄在[40,45)岁的人数为,
求随机变量的分布列和数学期望E.
(4分)(2015•上海)赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则 Eξ1﹣Eξ2= (元).
18.某中药种植基地有两处种植区的药材需在下周一、周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘.由于下雨会影响药材品质,基地收益如下表所示:
若基地额外聘请工人,可在周一当天完成全部采摘任务.无雨时收益为20万元;有雨时收益为10万元.额外聘请工人的成本为a万元. 已知下周一和下周二有雨的概率相同,两天是否下雨互不影响,基地收益为20万元的概率为0.
(Ⅰ)若不额外聘请工人,写出基地收益X的分布列及基地的预期收益;
(Ⅱ)该基地是否应该外聘工人,请说明理由.
13.某学校随机抽取名学生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,。则该校学生上学所需时间的均值估计为__________。(精确到分钟)
(1)0.06;
(2).
试题分析:本题属于概率统计中的基本问题,题目的难度是逐渐由易到难.
(1)因为第二组的频率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3
所以高为0.3/5=0.06。频率直方图如下:
(2) 因为[40,45)组、[45,50)组和[50,55)组的人数比为0.03:0.02:0.01=3:2:1,
所以三组中应抽出的人数分别为3、2、1.
=0,1,2,3.
,,
,.
.
本题考查了概率统计中的频率分布直方图和离散型随机变量的分布列和数学期望的问题.属于高考中的高频考点。
本题考查概率统计,解题步骤如下:
(1)利用直方图的性质求小矩形的高,并补充直方图。
(2)写出随机变量的取值,并求出相应的概率和数学期望。
(1)第一问中的高为频率/组距。
(2)第二问中随机变量的取值及对应的概率。