19.已知函数(a,b
R),记M(a,b)是|f(x)|在区间[-1,1]上的最大值。
(1)证明:当|a|≥2时,M(a,b)≥2;
(2)当a,b满足M(a,b)≤2,求|a|+|b|的最大值.
(1)详见解析;(2)3;
试题分析:(1)分析题意可知在
上单调,从而可知M(a,b)=max
,分类讨论a的取值范围即可求解;(2)分析题意可知|a|+|b|=
,再由M(a,b) ≤2可得|1+a+b|=|f(1)|
2,|1-a+b|=f(1)
2,即可求证.
(1)由f(x)= ,得对称轴为直线
,由|a|
2,得
,故f(x)在
上单调,∴M(a,b)=max{|f(1)|,|f(-1)|},当a
2时,由f(1)-f(-1)=2a
4,得max{f(1),f(-1)}
2,即M(a,b)
2,当a
(1)根据a的取值范围,得到函数在[-1,1]上的单调性,分类讨论证得结论;(2)由题中给出的新定义进行求解.
二次函数在闭区间上的单调性.