请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.
22.选修4—1:几何证明选讲
已知PQ与圆O相切于点A,直线PBC交圆于B、C两点,D是圆上一点,且AB∥CD,DC的延长线交PQ于点Q
(1) 求证:
(2) 若AQ=2AP,AB=,BP=2,求QD.
23.选修4—4:坐标系与参数方程
在平面直角坐标系中,曲线C1的参数方程为 (a>b>0,
为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点M
对应的参数
=
,
与曲线C2交于点D
(1)求曲线C1,C2的方程;
(2)A(ρ1,θ),Β(ρ2,θ+)是曲线C1上的两点,求
的值。
24. 选修4—5:不等式选讲
已知关于x的不等式(其中
).
(1)当时,求不等式的解集;
(2)若不等式有解,求实数的取值范围
22.(1)因为AB∥CD,所以∠PAB=∠AQC,
又PQ与圆O相切于点A,所以∠PAB=∠ACB,
因为AQ为切线,所以∠QAC=∠CBA,
所以△ACB∽△CQA,所以,
所以
(2)因为AB∥CD,AQ=2AP,
所以,
由AB=,BP=2得
,PC=6
为圆O的切线
又因为为圆O的切线
23.解:(1)将M及对应的参数φ=
,
;
代入得
,
所以
解析已在路上飞奔,马上就到!