某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的宣传费和年销售量
数据作了初步处理,得到下面的散点图及一些统计量的值.表中w1 =
1, ,
=
22.根据散点图判断,与
,哪一个适宜作为年销售量y关于年宣传费x的回归方程类型(给出判断即可,不必说明理由);
23.根据(I)的判断结果及表中数据,建立y关于x的回归方程;
24.已知这种产品的年利润z与x,y的关系为 ,根据(II)的结果回答下列问题:
(i)当年宣传费时,年销售量及年利润的预报值时多少?
(ii)当年宣传费为何值时,年利润的预报值最大?
附:对于一组数据,
,……,
,其回归线
的斜率和截距的最小二乘估计分别为:
,
(Ⅰ)适合作为年销售
关于年宣传费用
的回归方程类型;
(Ⅰ)由散点图可以判断,适合作为年销售
关于年宣传费用
的回归方程类型.
试题分析:(Ⅰ)由散点图及所给函数图像即可选出适合作为拟合的函数;
本题在寻求拟合函数比较易错
(Ⅱ)
(Ⅱ)令,先建立
关于
的线性回归方程,由于
=
,
∴=563-68×6.8=100.6.
∴关于
的线性回归方程为
,
∴关于
的回归方程为
.
在非线性回归方程进行预报预测;应用易错.
(Ⅲ)46.24
(Ⅲ)(ⅰ)由(Ⅱ)知,当=49时,年销售量
的预报值
=576.6,
.
(ⅱ)根据(Ⅱ)的结果知,年利润z的预报值
,
∴当=
,即
时,
取得最大值.
故宣传费用为46.24千元时,年利润的预报值最大.……12分
(Ⅲ)(ⅰ)利用关于
的回归方程先求出年销售量
的预报值,再根据年利率z与x、y的关系为z=0.2y-x即可年利润z的预报值;(ⅱ)根据(Ⅱ)的结果知,年利润z的预报值,列出关于
的方程,利用二次函数求最值的方法即可求出年利润取最大值时的年宣传费用.
在非线性回归方程进行预报预测;应用易错.