综合题14.0分
理科数学

设函数.

26.若处的切线斜率为,求的值;

27.当时,求的单调区间;

28.若,求证:在时,

第1小题正确答案及相关解析

正确答案

(1)

解析

(Ⅰ)若处的切线斜率为

考查方向

本题主要考查导数的几何意义,利用导数求函数的单调区间等知识,意在考查考生分析问题、解决问题等综合解决问题的能力。

解题思路

根据导数的几何意义求解,

易错点

不清楚

第2小题正确答案及相关解析

正确答案

(2)的单调减区间为,单调增区间为 ;

解析

(Ⅱ)由

时,令 解得:

变化时,变化情况如下表:

由表可知:上是单调减函数,在上是单调增函数

所以,当时,的单调减区间为,单调增区间为

考查方向

本题主要考查导数的几何意义,利用导数求函数的单调区间等知识,意在考查考生分析问题、解决问题等综合解决问题的能力。

解题思路

先求导,然后判断单调性后即可得到单调区间;

易错点

不清楚

第3小题正确答案及相关解析

正确答案

(3)略

解析

(Ⅲ)当时,要证,即证

,只需证

由指数函数及幂函数的性质知:上是增函数

  ∴

内存在唯一的零点,也即上有唯一零点

的零点为,则

考查方向

本题主要考查导数的几何意义,利用导数求函数的单调区间等知识,意在考查考生分析问题、解决问题等综合解决问题的能力。

解题思路

先将要求的函数变形为,然后判断其单调性即可证明。

易错点

不会构造函数解决问题,当所要的函数正负不确定时,不知道应该设零点解决。