17.甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为,乙投篮命中的概率为.
(I)求甲至多命中2个且乙至少命中2个的概率;
(II)若规定每投篮一次命中得3分,未命中得分,求乙所得分数的概率分布和数学期望.
13.将高三(1)班参加体检的36名学生,编号为:1,2,3,,36,若采用系统抽样的方法抽取一个容量为4的样本,已知样本中含有编号为6号、24号、33号的学生,则样本中剩余一名学生的编号是 .
18.在一次数学考试中,第22题和第23题为选做题. 规定每位考生必须且只须在其中选做一题. 设某4名考生选做每一道题的概率均为 .
(1)求其中甲、乙两名学生选做同一道题的概率;
(2)设这4名考生中选做第22题的学生个数为,求的概率分布列及数学期望.
18.某人居住在城镇的A处,准备开车到单位B处上班. 若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图.(例如:A→C→D算作两个路段:路段AC发生堵车事件的概率为,路段CD发生堵车事件的概率为.
(1)请你为其选择一条由A到B的最短路线(即此人只选择从西向东和从南向北的路线),使得途中发生堵车事件的概率最小;
(2)若记路线A→C→F→B中遇到堵车次数为随机变量,求的数学期望
(Ⅰ)设“甲至多命中2个球”为事件A,
“乙至少命中两个球”为事件B,
由题意得:
∴甲至多命中2个球且乙至少命中2个球的概率为:
(Ⅱ)η=-4,0,4,8,12,分布列如下:
解析已在路上飞奔,马上就到!