填空题4.0分
理科数学

14.正四面体的棱长为4,为棱的中点,过作其外接球的截面,则截面面积的最小值为______.

正确答案及相关解析

正确答案

解析

将四面体ABCD放置于正方体中,如图所示

可得正方体的外接球就是四面体ABCD的外接球,

∵正四面体ABCD的棱长为4,

∴正方体的棱长为

可得外接球半径R满足2R=解得R=

E为棱BC的中点,过E作其外接球的截面,当截面到球心O的距离最大时,

截面圆的面积达最小值,

此时球心O到截面的距离等于正方体棱长的一半,

可得截面圆的半径为r=

得到截面圆的面积最小值为S= =4π.

故答案为:4π

知识点

空间几何体的结构特征